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APPLICATION OF THE METHOD OF STEIN AND SANDERS TO THE
CAICULATION OF VIBRATION CHARACTERISTICS OF
A 45° DELTA-WING SPECIMEN

By John M. Hedgepeth and Paul G. Waner, Jr.
SUMMARY

Generalized influence coefficients are calculated by the method of
NACA TN 3640 for a large-scale, built-up, 45° delta-wing specimen. These
are used together with appropriate generalized masses to obtain the
natural modes and frequencies in symmetric and antisymmetric free-free
vibration. The resulting frequencies are compared with those obtained
experimentally and are found to be consistently high. Possible sources
of the disparities are discussed.

INTRODUCTION

The increased importance of flutter and other aeroelastic phenomena
has made the accurate determination of structural stiffness properties
a necessary part of aircraft design. For this reason, the Langley
Structures Research Division has been conducting a program of experimental
and theoretical research of the deflection and vibration properties of
built-up wing structures. One of the test structures is the large-scale
45° delta-wing specimen described in reference 1. Reference 1 also con-
tains the details of the static and vibration tests. The experimental
data obtained from this specimen have been used to assess the accuracy
of two analytical methods: that of Levy (ref. 2) and the one proposed
by Stein and Sanders (ref. 3). These assessments are summarized in ref-

erences 4 and 5.

The purpose of the present paper is to report the details of the
calculations made by the Stein-Sanders method. Influence coefficients
are first computed by the procedure outlined in reference 3. These coef-
ficients are then used in conjunction with the mass properties to find
the natural modes and frequencies of free-free vibration by means of
matrix iteration.



SYMBOLS

All quantities are in pound-inch-second units.

ay stiffness coefficient for covers (k = 0, 1, 2, 3, 4)
BoosBp1sB11  parameters defined by equation (15)

cl(y),cz(y) trailing- and leading-edge coordinates, respectively

E Young's modulus of elasticity

g acceleration due to gravity

[g] generalized influence-coefficient matrix

1 semispan

m mass per unit area

my generalized distributed mass (k = 0, 1, 2, 3, 4)
ﬁk generalized concentrated mass (k = 0, 1, 2, 3, 4)
N tip-station index, 1/e

po,pl,p2 load, moment, and second moment about y-axis

\ deflection

X,y coordinate system (fig. 1)

Xg x-coordinate of spar

Eé spar or stringer stiffness parameter

4 rib stiffness parameter

€ spacing between stations

u parameter defined by equation (23)

I potential energy of loads



Pyr PPy deflection, slope, and half-curvature at y-axis (supported
structure)

Yor¥yr Vo deflection, slope, and half-curvature at y-axis (free-
free structure)

w circular frequency

[ ] rectangular matrix

I | column matrix

L J row matrix
DESCRIPTION OF SPECIMEN

A schematic drawing of the delta-wing specimen is shown in figure 1.
It has a semispan of 112 inches, a root chord of 96 inches, and a leading-
edge sweep of 45°. The specimen is constructed entirely of 2024 aluminum
alloy which is assumed to have a Young's modulus of 10.6 x 106 psi and
a Poisson's ratio of 1/3. The cover sheets are relatively thin and are
stiffened by numerous stringers. There are four spanwise spars and a
leading-edge spar. Closely spaced ribs provide chordwise stiffening.

The dimensions shown in figure 1 are nominal and were used in the
calculations for locating stations, spars, and ribs. Precise dimensions
and details of the construction and of the weight distribution of the
specimen are given in reference 1. Points of interest to be noted are:

the depth tapers in the spanwise direction from 5% inches at the carry-

through section to l2 inches at the tip but is constant in the chordwise

direction. With the exception of the leading-edge spar, all spars are
unspliced for their entire length and are reinforced with heavy caps.

The leading-edge spar is spliced at the center line and has no cap. The
ribs are segmented, being broken at the spars. The cover sheets are of
uniform thickness and are continuous across the center line. The stringers
are made of equal-legged angles, are continuous across the center line,

and are riveted to the outside of the covers for convenlience in construc-
tion. The entire structure is symmetrical in the spanwise and depthwise
directions and there are no cutouts.



CALCULATION OF GENERALIZED INFLUENCE COEFFICIENTS

In the calculations, the approach outlined in reference 3 was
followed in detail. The end product is a matrix which gives the deflec-
tion Py chordwise slope 2% and chordwise half-curvature ¢, of the

neutral surface at a number of equally spaced statlons along the trailing
edge (y-axis) in terms of the total load Py’ moment Py» and second

moment Ps at each station. This generalized influence-cocefficient

matrix [g] 1is obtained from the inverse of a matrix [A] which is

formulated from the stiffness properties of the various parts of the
structure. The calculations leading to the formulation of [A] are
illustrated herein by following the step-by-step procedure in the section
entitled "Mechanics of Application" in reference 3. The numbers in paren-
theses refer to the numbers of the steps in that paper, and the reader

is advised to follow those steps in detail in conjunction with the present
paper. All numerical values are in inch-pound units and are used with
more significant figures than the actual measurements contain in order

to avoid accumulated round-off errors.

(1), (2) The chosen coordinate system and stations are indicated in
figure 1. The y-axis lies along the center line of the web of the rear
spar and the stations are spaced at seven 16-inch intervals. Thus the
stations coincide very closely with the rivet lines of every second rib.
Note that the positive direction of the x-axis is opposite to that of
reference 3. This change was made in order that points on the structure
would have positive values of x. No change in notation is necessary
except that c¢q(y) and c,(y) denote the x-position of the trailing

edge and leading (swept) edge, respectively, instead of the reverse. Thus

¢y (y) =0
e, (¥) = 96 (0 <y <16)
cply) = 112 - y (16 < y < 112)

(3) Because of symmetry, the neutral surface coincides with the
middle surface. The stiffness properties of the spars and ribs are given
in tables 2 and 3 of reference 1. The leading-edge spar (spar 5) must
be treated as two separate spars 5(a) and 5(b). The area of the stringers,
the z-coordinate of the centroid of the stringers, the thickness of the
cover sheets, and the z-coordinate of the midplane of the cover sheets
are given in table 1 of reference 1. The x-coordinates of the stringers
can be found from figure 2 of reference 1 if 5.25 inches is used as the



distance between the center line of the rear spar and the rivet line of
the rearmost stringer.

(4) The required values of the cover stiffness parameters 8k n
J

and a | are given in table I. They and all succeeding values of
k,n+=
2

stiffness have been divided by E, which factor will wltimately reappear
as a multiplier on the generalized influence-coefficient matrix.

(5), (6), (7) The values of effective stiffness and location

Bs,n

X5, for the swept spar 5(b) are given in table II. The contributions

of the unswept spars and the stringers are included in the combined
fashion suggested in step (10) of reference 3. Consequently, the summed

quantities E: BS n’ E; Bs ,n%s,n? }l Bs n* S n’ E: Bs n* s n and

= k . .
E; Bs,nxs,n are listed in table IT.

(8) The values of the rib stiffness parameter 7y for each rib are
given in table III; the ribs are numbered in accordance with their
station locations, either on or halfway between stations. It should be
noted that the rib stiffnesses have been reduced somewhat (about 5 per-
cent) below those in reference 1 in order to account for the ribs' being
broken at the spars.

From the foregoing quantities, the matrix [A] can be set up,
inverted, and modified to obtain the [g] matrix. Tables Iv(a) and IV(b)
show the results for the cases of symmetric deformation and antisymmetric
deformation, respectively. In either case,

o] = [g]l»] (1)

For symmetric deformation [@| is a 2h-element column matrix: eight
mo's, eight @l's, and eight @2'3 for stations O through 7. The coclumn
o l's, and p2's. For
antisymmetric deformation |@‘ and ]pl are 2l-element matrices, the
quantities at the center line not appearing because they are always zero.
Note that the boundary conditions specified in reference 3 require that

wo . and @1 0 be zero in the symmetric case and that wo 1 be zero

b b
in’the antisymmetric case. Space has been provided for these gquantities
in the matrix formulaticn in order to allow the introduction of rigid-body

matrix lp] is similarly made up of eight p_'s, p



rmotions necessary for the analysis of free-free vibrations. At this
point, the rows of zeros in the [g] matrices are sufficient to satisfy
the boundary conditions on the supported structure.

DETERMINATION OF GENERALIZED MASS MATRIX

In this section, the calculation of the generalized mass matrix
needed for the determination of vibration modes and frequencies is out-
lined. Since the mechanics of the application of the Stein-Sanders
approach to vibration problems has not heretofore been described, a
detailed treatment is desirable here.

As has been pointed out in reference 3, the generalized loads pk n
3
are given in terms of the potential energy of the applied loads Hp by
ol
Y
Pen="3 (2)
’ Wk,n

where, for sinusoidal natural vibration,

(.U2 1 Co (_L)2 1 C2 >
Ip = - = Jf JF mwadx dy = - — J[ JF m(wo + xwl + X2W2) dx dy
2 Jo Jey 28 Jo Je;
()

Note that w = WO + xwl + xgwg, where the Wk's are the actual gener-

alized deflections which include possible rigid-body motions. The use
of wk n in equation (2), rather than Py n os was employed in refer-
b b

ence 3, is valid here since the relation between the inertia loading
and the vibration amplitude is independent of the particular boundary
conditions on the structure. Carrying out the integration in the chord-
wise direction yields

2
_ _uf 2
Ip = - 3 L [mo‘”o +my (2uguy ) + mp(2gkp + ¥12) + Zmgdo v, + mhwg}dy

(4)

where



The functions m, are not, in general, continuous. Such things

as structural discontinuities and fuel cells will produce finite dis-
continuities in my; concentrated masses and ribs will produce impulse-

type discontinuities. It is convenient to assume temporarily that there
are no discontinuities, and then to correct for their effects subse-
gquently. Thus, for continucus my, trapezoidal integration of equa-

tion (L4) gives

Pe (1 2 2 1 2
Tp = - Cgog_e<§ mo,0%,0 * M0,1%0,1 T+ + * * Fo,n-1v0,n-1 * 5 Mo,n¥o,n T
m o¥%,0%1,0 ¥ @1,1%0,1%,1 7 ¢ 0 0 FonaaYo, w1, -1 F M Yo, Y, t
..................................... +
1 2 2 2 i 2
5™,0%,0 F ™,1Y2,1 o TR naae Nl T3 Muonte, N (6)
where the equally spaced stations are numbered from O at the center
line to N at the tip.
Using equation (2) yields
-
- B
2 0,0
em
_ o) 01 v
po - E- . e . o +
€Mo,N-1
€nm
\ 2 0,N]
B ]
2 ™,0
emy
. . +
Wl
€my ,N-1
€nm
2 1,N
€ n 111
2 2,0
€
"2l Wil
€0 N-1 ]
B 2 "2, | |




and Py and p, can be expressed in a similar fashion.

Thus,
_
P Mo My Mo | ¥g
2
Py = &My M, Myl | ¥y (8)
Pa LME My Muﬂ Vs
oxY
o2
o] = ]I (9)

where the My are (N + 1) X (N + 1) matrices. The contribution of the
continuous myg to these matrices is given by

e
5 "k,0 ]
emy

A finite discontinuity in my can be handled in several ways, but

the simplest is merely to alter the value of my, at the station nearest

the discontinuity. This can be done in precisely the same manner as is
outlined for discontinuous &, 1in step (4) of the step-by-step proce-

dure in reference 3.

The energy due to a concentrated mass or a rib mass located at a
distance ed to the right of station J is

 ef)= 2 _
= - o mo[(l - g g+ dwo,jﬂ} + Eml[(l - Ay 5+ dwo’jﬂ] [(1 -y g+ dwl,ﬁl] +

_ _ 2
&?(l'dNbJ'+MbJH]ﬁl'dN&J+(N&ﬁﬂ +m2U1-dNLj+d%ﬁﬁﬂ N

_ _ 2
2m3[}l -+ dwl,j+;][¥1 - Ay 4+ dw2’3+i] + mh[Fl - Ay + dw2)j+£



where the ﬁk's are integrals across the chord analogous to those

defining my. Note that linear interpolation has been used to specify
the values of wn between stations. Using equation (2) gives

_of 2 _ o _
Po,5 = gt - Do,y + AL - gy, gy + (1 - ATV g+ AL - @)y gy +
(1 -dj%ﬁw +d(1 - a)my
2¥2,3 2¥2, 3+1
} (10)

2
W _ o _ 2_
.= —4d(1 - 4 . . -
Po,#1 7 & {< Mgt j + &Tg¥g, gp1 + ML - Ay g+ aTYy gy +

— o
a(1 - d)mevz,j +d m2¢2’3+i}

and so forth. Thus it can be seen that the effects of the concentration
can be incorporated by including in each LMéI matrix a block of terms
like

(1 - d)eﬁk a(l - a)my

a(1 - a)m, daﬁk

The upper left-hand element is to be located in the (J + 1) row and
column. All the concentrations are handled in this manner.

For the delta-wing specimen under consideration the generalized
mass matrix is given in table V. The computed numbers are based on the
mass (weight) data given in tables 2, 4, and 5 and figure 4 of refer-
ence 1. The generalized mass matrix also includes the masses of shaker
armatures (2.0 pounds each) and pickups (0.7 pound each) located as
shown in figure 10 of reference 1.

In order to determine free-free modes and frequencies, the con-
straining conditions used in obtaining the influence coefficients must
be relaxed. The freeing procedure leading to the calculatlon of these
vibration characteristics is discussed in the next section.

FREE-FREE VIBRATION ANALYSIS

Symmetric Modes

For symmetric free-free vibration the actual generalized deflec-
tion V¥, 1is related to the constrained generalized deflection ¢, by

the following matrix equation:
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V[ = o] + ¥ o]To| *+ V10T (11)

where ’IOI and ’Ill are (for the present structure) 2k-element columns.
The first eight elements of IIO' are equal to 1 and all others are O;

the second eight elements of !Ill are 1 and the rest are O. The term
wO,OIIOI thus allows rigid-body translation; the term Wl,O|Ill allows
rigid-body pitching.

Expressing |¢| in terms of |p] (eq. (1)) and then |p| in terms
of |W| (eq. (9)) yields

¥ = LRIV + ¥o,0lTof + ¥2,0/T) (12)

The unknowns Wo 0 and *1 o can be found from the conditions for self-
) )

equilibration of the inertia loading; that is,
[To]lp| =0
Z.)Ip| =0

where the rows LIQJ and L;lj are the transposes of the corresponding
colums. Multiplying equation (12) by [M] and then by |Io] end [Ta]
gives, respectively,

0 = L 1o/ 14 [& B | ¥] + Boo¥o,0 + Bor¥a, o

(13)

(14)
0= Ly 0 [E) 141 + Brgvo,o0 + Brava o
where the left-hand sides are O by wvirtue of equation (13) and
Boo = |Io) [M] |To] )
Bo1 = Bio X (15)
= To) 1M |1y
Bu = (T[] [Taf |

Note that Bpp 1is half the mass of the specimen, Bgyy is half the mass
morent of the specimen about the trailing edge, and Bj; is half the
mass moment of inertia of the specimen about the trailing edge.
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Equations (14) can be solved for WO 0 and Wl 0* The result is
H b4

WO,O - cu2 2 (BO]_ LIJJ - B]_l I_Ioj) [M] [8] [M} I‘l‘l W
g(BOOBll - B01)
> (16)
h,0 = ——5——~ (B0 o) - Boo ) ) B (€] 4] 1+
g(BOOBll - Bm) )
Substitution of WO,O and wl 0 into equation (12) yields,
finally, ’
[¥] = g{[ﬂ + [Fs]} E] 1] ¥ (17)
where [I] 1is the identity matrix and
[Fs] = — {Boﬂlol [T1) + BoalTal [Fo) -

BooP11 - Boa
Boo 1l [1a] - Baal%ol [Io}} (] (18)
Equation (17) is in a suitable form to be handled by standard
iteration techniques in order to calculate the natural modes and
frequencies.
Antisymmetric Modes

For antisymmetrical free-free vibration, the following relationship
exists:

el = lol + g 417l (19)

where |r| is (for the present structure) a 2l-element column with the
first seven elements equal to the integers from 1 to 7 and the other
elements equal to O. The term Vg, llr[ allows freedom of rigid-bedy

y

rolling.

Using equations (1) and (9) gives

vl = LI 0 1] + v, Io] (20)



iz

Note that in this case [M] is a matrix of twenty-first order obtained
from the cne in table V by deleting the first, ninth, and seventeenth
rows and columns of that matrix. It should be recalled that this reduc-
tion of order comes about because the generalized deflections at the
center line (station zero) are necessarily zero.

Self-equilibrium of the inertia rolling moments requires that

=] 1p| =0 (21)
0 = 2—2|_r_[[M] (e) M) [¥] + w¥g 1 (22)

where
w= [z [M]r] (23)

is the mass moment of the half-span about the center line.

Solving for Vg § and substituting in equation (20) gives
2

ol = £{0 + [} @614 (2
where

EIEL (o5)

4 -

Equation (24) is in a form suitable for iteration.
RESULTS AND DISCUSSION

The first four modes and frequencies for free-free symmetric and
antisymmetric vibration were calculated by matrix iteration from equa-
tions (17) and (24). The results are given in tables VI and VII and in
figure 2. In table VI are shown the frequencies obtained from the Stein-
Sanders method, the frequencies measured experimentally (ref. l), and
the percentage difference. 1In table VII are shown the calculated mode
shapes. These are given in terms of the values of Wk at each station

for each mode. The node-line patterns for the various modes are shown in
figure 2. The node-line locations at each station were calculated from

the equation

WO + xwl + xewg = 0
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Also shown for comparison are the node-line patterns obtained experi-
mentally (ref. 1).

As shown by figure 2, the node lines calculated by the Stein-Sanders
method agree extremely well with those obtailned experimentally. On the
other hand, the errors in the calculated frequencies shown in table VI
are large, especially for the higher modes. These errors are most prob-
ably due to inaccuracies in the generalized influence coefficients; these
inaccuracies, in turn, arise from basic shortcomings of the Stein-Sanders
method when applied to this particular structure. The most serious of
these are the lack of enough freedom in the chordwise shape of the deflec-
tion and the neglect of the effects of transverse shear. The magnitude
of these effects can be visualized from the comparison of theoretical and
experimental static deflections under a uniform load shown in figure 3.

Figure 3(a) shows the deflections along the odd-numbered stations
due to a uniform loading of 1 psi for the specimen mounted on the three-
point support used in the experiment (ref. 1). Figure 3(b) shows the
deflections for the specimen cantilevered at the root chord. The theo-
retical deflections were calculated from generalized influence coeffi-
cients modified for the different support conditions by the procedure
outlined in appendix A of reference 3. The experimental deflections
were calculated from the experimental influence coefficients tabulated

in reference 1.

Figure 3 shows large errors in the theoretical deflections, partic-
ularly in the region close to the center line. Here the curvatures in
the chordwise direction are large. Going from the three-point support
to the cantilever support greatly reduces the magnitude of the curvature
in the chordwise direction and improves the theoretical results, as can
be seen from the solid curves in figure 4. Further improvement results
from including approximately the effects of transverse shear, as illus-
trated by the long-and-short-dashed curves. The transverse-shear cor-
rections, which were obtained merely by adding the shear deflections of
the structure treated as a beam to the solid-line deflections, bring
the theoretical results into excellent agreement with the experimental

results.

CONCLUDING REMARKS

The poor agreement between theoretical and experimental vibration
frequencies indicates that the Stein-Sanders method is unsatisfactory
for the analysis of the particular delta-wing specimen treated herein.
To conclude that the method is unsatisfactory for more realistic struc-
tures, however, would be erronecus since the present specimen had no
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extra stiffening in the chordwise direction such as would be afforded by
the fuselage in an actual case. The static-deflection results imply that
a significant improvement in the accuracy would result from such stif-
fening. On the other hand, substantial errors due to tranverse-shear
effects would still occur unless these effects were incorporated into
the analysis.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Fileld, Va., October 22, 1958.
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TAELE ITI

RIB STIFFNESS PARAMETERS

Station, 7n 7“*%

n E E

0 193.170 386.339

1 1115.42 299.97k4

2 228.971 174647

3 127.304 89.9428
L 63.1952 40.9168
5 24,7148 14 .5403

6 7.10490 2.34160
7 T R ——

17
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gOO = 10'2
81 = 107
802 = 1076
g1y = 10
g0 = 107
g2 = 1070

COQQOOCO0O0

[eNoNeoNoReNoNole)

-4.589h4
-10.4855
-16.4006
-21.7915
-26.5575
-30.9116
-35.0030

[eNoNeNeNoNoNoNe

0
25.839
53.9159
78.6843
97.5257

109.681L
117.1688
Lll6'9185

159.4650
131.6396
100.0772
69. 7104
43.9338
24,5883

6.5715
L 21.2506

TABLE IV.- GENERALIZED INFLUENCE-COEFFICIENT MATRIX

1.4605
2.3371
2.9633
3.4715
3.9320
4.3812
4 8134

-5.2356
-7.3528
-8.2481
-8.6298
-8.851k
-9.0593
-9.237h

0
-0.3323
-4 8743

-10.5071
-16.0319
-21.0%19
-25.6066
-29.9262

0
28.352l
37.9775
40.3652
39.9856
39,1644
39.1042
39.0262

0
-1.4518
18.022%
41.3218
61.3070
T4 .8382
82.8651
82.6621

131.6396
132.8083
110.6374
80.9280
51.9840
28.975%

9.3431
2L 4307

(a) Symmetrical Deformation

[3] = E—} €10

0
2.3371
6.2959
3.0016

11.118%

12.9979

14,8160

16.5740

~7.3041

-18.4467
-23.0549
-24 . 8620
-5, 7484
-26.4959
-27.1494

0.9345
3.0949
-0.7644
-6.5318
-12.3566
-17.7943
-22.9798

0
37.97175
95.1750

111.8504

112.2741

109.1631

108.4191

108.0850

o]

-9.8037
-35.8236
-2k . 2851
-2.7511
14 .8797
25.0295
24.9975

100.0772
110.6374
138.8273
118.6105
80.3315
4k 0332
16.3945
32.7155

&1 &o2
811 Bp| i By = &y
81 522J
o] 0 0
2.9633 3.4715 3.9320
9.0016 11.1183 12.9979
16.5142 22,0266 26.7453
22.0266 3L .8672 I 9403
26.7453 44,9403 66.4296
31.2486 5k . 2410 844999
35,6145 63.2448 101.7525
0 0 0
-8.1018 -8.357h -B.4h77
-22.7682 -24.1506 -2k .5853
-ko.2180 -45.6460 -47.0877
-46.1386 -71.4180 -77.3319
-48.8833 -79.1175 -116.6625
-50.6333 -82.8500 -126.8145
-52.1841 -86.0003 -133.1657
0 0 o}
0.977h 0.5543 0.1588
4.,2470 2.5854 0.7063
10.1746 7.8673 2.5061
5.2467 19.6448 9.0176
-2.4834 9.9552 30.4915
-10.1823 -3.3790 5.2410
-17.5840 -16.4639 -23.7835
0 0 o]
40,3652 39.9856 39,1644
111.8504 112.2741 109.1631

204 .3501 218.2796 210.592k4
218.2796 372.4092 372.8470

210.592h

372.8470 £67.7383

206.4018 356,8939 634 .3781

205.3515 353.0658 616.0558
0 0 0
-9.9815 -6.7716 -3.3508
-43 %052 -30.6770 -1k, 8455
-115.1064 -98.2423 -51.0132

-102.7624 -275.8926 -179.4049
-74.3519 -242.4892 -666.7485
-55.9268 -19%.016% -525.2459
-55.3751 -189.30%1 -498.6749

69.7104 43.9338 2k 5883

80.9280 51.9840 28.9754
118.6105 80.3315 4 . 0332
210.1371 171.7124 97.7948
17l.7124 k59 4673 324 .9523

97.7948 324 .,9323 1417.3669

37.5284 122,8315 597.8610

58.8470 148.5812 L61.6689

0

4.3812
14.8160
31.2486
54.24k10
84 .4999
121.764%
154 7403

0
~-8.6696
-25.3639
-48.7870
-80.6397

-125.3510

-191.9687

-205.4808

0.6541
2.0006
3.8709
6.3516
10.8050
48.4020
-hhy 7327

0

39.1042
108.4191
206.4018
356.8939
634 .3781
1,327.3634
1,236.7512

0
-2.7615
-9.1998

-25.9552
-68.4267
-25%.1988

-1,954.3729

-1,808.3827

6.5715
9.3431
16.3945
37.5284+
122.8315
597.8610
6,995.8497
3,675.1493

o
48134
16.5740
35.6145
6%.2448
101.7525
154 . T403
230.3527

—

0
-8.6415
-25.2526
-48.4920
-79.8611

-122.88717
-182.5040
-286 .40k

0
0.0363 T
-0.4154
-2.3061
-9.0831
-37.3008
-176.2185
-7133.9283

0
39.0262
108.0850
205.3515
35%.0658
616.0558
1,2%6.7512
7,756.8221J

0
-2.0778
-6.4535

-16.8594
-h0o.1844

-50.20k%
37.4970
h9,695.9h19j

21.2506
2l 4307
32.7155
58,8470
148.5812
461.6689
3,673.1493
511,957.79 |




800 = 1072 _
€0y ~ 107 |
Boo = 10 |

L
g1 = 1076 {
€1p = 1078 {
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TABLE IV.- GENERALIZED INFLUENCE-COEFFICIENT MATRIX - Concluded

(b) Antisymmetrical Deformation

3180 fo1 Bo2

] = 7|80 811 B2’ B1y= &5
80 821 B
o] 0 0 o} o}
o] 2.57123 4.36403 5. 83200 T7.20010
0 4. 36403 10.9163 15,900k 20.337h
o] 5.83200 15.9004 28.5161 38,7284
o] 7.20010 20.337Th 38.7284 60.8982
0 8.55431 24.6510 48. 3060 79.8337
0 9.91682 28.9694 57.8162 98.2626
0 0 o} 0 0
1.79887 -4.53310 -6.08128 -5,78413 -5.15891
L.61612 -2.40976 -1k, 3545 -16.2288 -15.2881
8.03087 2.74318 -11.0121 -30.4154 -32.4931
11.7777 9.04169 -3.65303 -26.2776 -58.5211
15.6755 15.6450 4. 56756 -17.9999 -55.1910
19.6327 22.3059 12. 840k -5.42059 -48.4080
o] 0 o} 0 o
0.0490400 5. 96449 6.36279 L. 39499 2.11223
0.115012 7.32222 16.6890 13.0266 6.0558
0.186129 6.90149 16.3851 28.3729 14.8358
0.257123 6.06107 13.0697 22.1589 38.5729
0.326777 5.26017 9.53703 12,1339 15. 4922
0.395885 %.53113 6.22020 2.38588 -11.3255
12.7550 20.4739 25.7624 29.5062 32.0013
20.4739 73.8791 91.9924 95.6147 95.2772
25,762k 91.992h4 183.3723 198. 1404 191.5197
29.5069 95.6147 198. 1404 350.T493 350.4543
32.0013 95.2772 191.5197 350.4543 64%.2705
33,6062 95.2198 186.0352 330.9064 605.0374
33,4978 94.9139 185.1218 327.3572 587.0817
0.357139 2.51667 4.23019 L. 88730 4.53501
0.416251 -35,7211 -35.9270 -22.0109 -7.57499
0.372644 -42.3980 -119.9726 -96.6797 -46.7637
0.304273 -37.4011 -119.2887  -281.2345 -178.1168
0.250619 -31.1834 -98.9304  -252.5471 -667.5713%
0.22253%9 -27.4213 84,4719  -204.483%8 -526.4627
0.222330 -o7.3427 -83.9134  -200.8741 -500.0124
-0.376591  -0.437242 ~0.364781 -0.2b5%16 -0.13606%
-0.437242 43,2112 L7.7417 34, 7671 18.8111
~0.364781 b7 Th1T 157.5055 138.0318 79.2549
-0.245316 34,7671 138.0318 438, 0681 313.1202
-0.136065 18.8111 79.2549 313%,1202 1,411.05k4
0.0606687 6.86534 28.5229 113.7636 593.1698
-0.103730 11.6145 43,0942 137.7855 L457.5185

0
8.55L31
24,6510
48. 3060
79.8337

118.5971
153.4663

o]
SbLThETL
-14. 4178
-31.6401
-61.5330
-113.1384
-112.0715

¢}
0.506115
1.03498
1.72992
4.8300%
41.0693
-53.2766

33,6062
95.2198
186.0352
330, 9064
605.0374
1,291.820
1,201.730

2.48129
-0.649586
-11.9076
-52.001k
-235.6573
-1,935.246
-1,789.626

-0.0606687
6. 86534
28.5229

113.7636
593.1638
6,992,212
3,676,822

0
9.91682
28.969k
57. 8162
98.2626

153.4663
231.,7661

[¢]
-L.72819
-14.3140
-31.1675
-53.4878
-104.2097
-193.6732

0
0.880214
0.696020
-4.31509
-30.3993
-167.0757
-722.6711

33.4978

94.9139
185.1218
327.3572
587.0817
1,201.730

T,722.306 ]

—

6.66447

3.9764k4
-6.58982
-30.0105
-41.7332

43,6259
-49,687.76 J

-0.103730 7
11.6145
43,0942

137.7855

457.5185

3,676.822

511,958.0
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TABLE VI.- COMPARISON OF VIBRATION FREQUENCIES
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Symmetric modes

Antisymmetric modes

Frequency, cps

Mode Frequency, cps Error, Error,
Experimental|Theoretical percent Experimental| Theoretical percent
First 43,3 L6. 4 7.16 52.2 56.70 8.43
Second 88.8 105.3 18.58 91.7 103.4 12.77
Third 122.8 150.0 22.15 131.1 166.6 27.08
Fourth| 16L.2 202.0 23.02 169.2 216.5 27.95
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TABLE VII.- THE V¥ COEFFICIENTS FOR SYMMETRIC AND ANTISYMMETRIC MODES

First symmetric mode First antisymmetric mode
Station,
n ¥o,n ¥1,n ¥2,n Yo,n Vi,n Vo,n
o] -1.4862 0.02L457 -0.00005546 0 0 0
1 -1.3789 .023320 - 00005404 -.0312 .005752 .000000L7
2 -1.0651 .020134 -.00005258 -.1154 .013131 - .00001392
3 -.5229 .014939 - .00005700 -.2687 .0210%9 - .00002562
Y .2582 .007699 -.00007280 -.5137 .028935 -.00002058
5 1.2596 -.001205 - .0001043Y -.8625 .036493 .00001118
6 2.4220 -.011701 - .00009519 -1.2995 .043408 .00006029
7 3.6672 -.014848 -.00069212 -1.7963 L0L5575 .00050698
Second symmetric mode Second antisymmetric mode
Station,
" WO,n wl,n W2,n vO,n Wl,n w2,n
0 0.2255 -0.009340 0.00012448 0 0 0
1 2154 -.010401 .00013217 L3181 - .006L 77 - .00000030
2 L197h -.013968 .00015982 .6018 -.013888 .00001913
3 .180k4 -.019120 .00019049 .7396 -.019110 .00004005
in .1983 -.025141 .00020134 .6272 -.019885 00005835
S .295k4 -.031593 .00016630 .1908 -.01L828 .00008543
6 1930 -.037493 .00003626 -.5527 -.004515 00014013
7 .7923 -.041011 -.00052598 -1.5264 .003366 .00100000
Third symmetric mode Third antlisymmetric mode
Station,
n Wo,n vl,n W2,n Wo,n vl,n v2,n
0 -0.0682 -0.005360 0.00009133 0 0 0
1 0204 - .006366 .000094 84 -.0643 -.001502 .000000k 2
2 1029 -.008858 .00010193 -.1578 .002960 - .0000628L
3 2486 -.011115 .00009855 -.2096 .012590 -.00018514
h 3240 -.011129 .0000784T -.2107 .026305 - .00033897
5 2105 - .006905 .00005602 - .2066 L0k1626 - 00043593
6 -.1625 .001761 .00009912 -.3680 .053467 -.00021608
7 -.8011 .010870 .00093706 -.7626 .062547 .00100000
Fourth symmetric mode Fourth antisymmetric mode
Station,
" wO,n Wl,n v2,n WO,n Wl,n w2,n
0 0.4506 -0.0255T7h4 0.00025835 0 0 0
1 38Tk -.023308 00023509 - .0964 .002070 - .00000012
2 .1998 -.014k4oT .0001534T7 -.1062 .000798 .00002517
3 -.0619 .000218 00000601 -.0097 -.003736 .00006835
N -.2976 .018320 -.00018550 .1522 -.00952% .00010543
5 -.3649 .033068 -.000353811 2373 -.011913% .00010629
6 -.1756 .035897 - .000281k5 .05Th -.005948 .00009922
T .2303 .029159 - .00035149 -.5128 .007359 .00096160
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Figure 1.- Diagram of wing specimen showing construction, stations used
in the analysis, and coordinate system.
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—— theoretical

— —— experimental

Ist Mode 2nd Mode

3rd Mode 4th Mode

(a) Symmetric modes.

O Shaker position
—— theoretical

— — — experimental

Ist  Mode 2nd Mode

3rd Mode 4th Mode

(b) Antisymmetric modes.

Figure 2.- Node-line patterns for free-free natural modes.
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Figure 3.- Deflection of delta-wing specimen under uniform load of 1 psi.
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Figure 3.~ Concluded.
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